lunes, 12 de junio de 2017

Las matemáticas en la Biblia

Las matemáticas en la Biblia

      Las matemáticas son una disciplina que historicamente se ha ido estudiando, pero no podemos dejar de mencinonar que en la Biblia, donde encontramos la palabra de Dios, también encontramos matemáticas, ya que através de las matemáticas Dios creo el Universo que nos rodea.

Aquí mencionaremos algunos textos biblicos en donde la matemática está presente. Disfruten de la lectura y aprendan cada día algo nuevo. Estos textos puedes encontrarlos en una publicación de la página web  www.amos524.org


Conceptos Matemáticos del Libro de Génesis:


Aquí está una lista de conceptos matemáticos que el niño escuchará al copiar el
libro de Génesis. Génesis es el libro más antiguo del mundo, y de todos modos contiene
los principios matemáticos más modernos. La mitología no contiene todos los principios
básicos de las matemáticas. ¿Cómo pudo Moisés haber sabido todo esto 1400 años antes
de Jesucristo? Porque fue inspirado por Dios, el matemático magno.

En Génesis existe el concepto del “cero”, la ausencia de todo. “En el principio
creó Dios los cielos y la tierra. Y la tierra estaba desordenada y vacía.” (Gen. 1: 1-2.) La
frase subrayada es la frase hebrea “tohuw bohuw”, que significa la ausencia total de algo
que se puede definir o medir o contar.

En Génesis existe el concepto de “secuencia de números”, es decir, una correspondencia
entre los números (1, 2, 3, 4...) y los eventos en el tiempo. Después de la
creación de la luz, ya era posible dar un número a cada día. Este es el primer uso de números
en la historia de este planeta. Dios inventó los números cuando no había más que contar
que la luz y la oscuridad. Empezó a contar “días”. Los niños pueden hacer lo mismo.

En Génesis existe el concepto de “medidas y pesas”, es decir una cantidad fija
que no cambia, que se usa para medir las demás cosas. Génesis contiene medidas de
tiempo, de longitud, de peso, de volumen.

1. Tiempo: El “día” se define como un período de oscuridad y otro período de
luz: “Y fue la tarde y la mañana un día.” (Gen. 1:5.) El “año” no fue definido hasta la
creación del sol en el día cuatro: “Dijo luego Dios: Haya lumbreras en la expansión de
los cielos para separar el día de la noche; y sirvan de señales para las estaciones, para
días y años.” (Gen. 1:14.) Es muy importante notar que ya que fueron definidas estas
medidas del tiempo (“día” y “año”), se han usado sin cambiar a través de toda la Biblia,
y permanecerán hasta el fin del mundo. Las medidas oficiales no cambian.

2. Longitud: El “codo”. “Y de esta manera la harás: de trescientos codos la longitud del arca, de cincuenta codos su anchura, y de treinta codos su altura.” (Gen 6:15.)

3. Peso: El “siclo”. “Entonces Abraham se convino con Efrón, y pesó Abraham
a Efrón el dinero que dijo, en presencia de los hijos de Het, cuatrocientos siclos de plata,
de buena ley entre mercaderes.” (Gen. 23:16.)

4. Volumen: La “medida”. “Entonces Abraham fue de prisa a la tienda a Sara, y
le dijo: Toma pronto tres medidas de flor de harina, y amasa y haz panes...” (Gen. 18:6.)
La palabra subrayada es la hebrea “seah”, una medida de un tercero de una efa.

En Génesis existe el concepto de “clasificación”, es decir, que se puede clasificar
los objetos en grupos, dependiendo de sus características. Ya que los objetos han
sido “clasificados”, dos objetos pueden considerarse como “iguales” o “diferentes” si
pertenecen al mismo grupo, o no. Dos objetos pueden considerarse “iguales” aunque no
son idénticos. Por ejemplo, aunque dos animales no son idénticos (diferentes tamaños o
colores), se consideran “iguales” porque pertenecen al mismo tipo o especie. “Luego
dijo Dios: Produzca la tierra seres vivientes según su género, bestias y serpientes y animales
de la tierra según su especie. Y fue así.” (Gen. 1:24.) Las dos palabras subrayadas
son la misma palabra hebrea. Dios creó cada tipo o clase o “especie” de animal.

En Génesis existe el concepto de ser “miembro” de un grupo definido.
“Y dijo Jehová Dios: He aquí el hombre es como uno de nosotros, sabiendo el bien y el
mal” (Gen. 3:22.)

En Génesis existe el concepto de “enumerar” los miembros de un grupo.
Para esto se usan números enteros. Por ejemplo:
“Y fue la tarde y la mañana un día.” (Gen. 1:5.)
“E hizo Dios las dos grandes lumbreras.” (Gen 1:16.)
“Y engendró Noé tres hijos: a Sem, a Cam y a Jafet.” (Gen. 6:16.)
“Y salía de Edén un río para regar el huerto, y de allí se repartía en cuatro brazos.” (Gen 2:10.)
“Ordenaron contra ellos batalla en el valle de Sidim... cuatro reyes contra cinco.” (Gen14: 8-9.)
“porque le he dado a luz seis hijos” (Gen 30:20.)
“Porque pasados aún siete días, yo haré llover sobre la tierra” (Gen 7:4.)

En Génesis existe el concepto de “fracciones” (quebrados), es decir, números
que expresan una parte del entero y del total. “un pendiente de oro que pesaba medio
8 siclo” (Gen. 24:22.)  “y de todo lo que me dieres, el diezmo apartaré para ti.” (Gen. 28:22.)
“De los frutos daréis el quinto a Faraón, y las cuatro partes serán vuestras” (Gen 47:24.)

En Génesis existe el concepto de “comparación”, es decir, unos son “mayores”
o “menores” que otros: “E hizo Dios las dos grandes lumbreras; la lumbrera mayor para
que señorease en el día, y la lumbrera menor para que señorease en la noche.” (Gen. 1:16.)
“No hay otro mayor que yo en esta casa” (Gen 39:9.)
“su hermano menor será más grande que él” (Gen. 48:19.)

En Génesis existe el concepto de “exceso”, es decir, algo demasiado grande
para caber. “Y la tierra no era suficiente para que habitasen juntos, pues sus posesiones
eran muchas, y no podían morar en un mismo lugar.” (Gen. 13:6.)

En Génesis existe el concepto de “falta”, es decir, algo que no llega al número
o tamaño deseado. “Quizá faltarán de cincuenta justos cinco; ¿destruirás por aquellos
cinco toda la ciudad? Y dijo: No la destruiré.” (Gen. 18:28.)

En Génesis existe el concepto de “equivalencia”, es decir, que se considera el
valor de una cosa igual a otra cosa. Este concepto se usa para comprar y vender con dinero.
“la tierra de Havila, donde hay oro; y el oro de aquella tierra es bueno” (Gen 1:11.)
“Y Abram era riquísimo en ganado, en plata y en oro.” (Gen. 13:2.)
“Entonces Abraham se convino con Efrón, y pesó Abraham a Efrón el dinero que dijo,
en presencia de los hijos de Het, cuatrocientos siclos de plata, de buena ley entre mercaderes.”
(Gen. 23:16.)  “Después mandó José que llenaran sus sacos de trigo, y devolviesen el dinero de cada
uno de ellos, poniéndolo en su saco.” (Gen. 42:25.)

En Génesis existe el concepto de “multiplicación”, es decir, que una cantidad
pequeña se hace muchas veces más grande: “Y Dios los bendijo, diciendo: Fructificad y
multiplicaos, y llenad las aguas en los mares, y multiplíquense las aves en la tierra.”
(Gen.1:22.)
“Ciertamente cualquiera que matare a Caín, siete veces será castigado.” (Gen. 4:15.)
“...en verdad setenta veces siete lo será.” (Gen 4: 24.)
“Y sembró Isaac en aquella tierra, y cosechó aquel año ciento por uno; y le bendijo
Jehová.” (Gen. 26:12.)  “tomad en vuestras manos doble cantidad de dinero...” (Gen. 43:12.)

En Génesis existe el concepto de “unidad”, es decir, un grupo unido por una
característica que todos los miembros comparten: “Tenía entonces toda la tierra una sola
lengua y unas mismas palabras.” (Gen. 11:1.)
“Que siete espigas llenas y hermosas crecían de una sola caña” (Gen. 41:5.)
“le haré fructificar y multiplicar mucho en gran manera; doce príncipes engendrará, y
haré de él una gran nación.” (Gen. 17:20.)

En Génesis existe el concepto de “adición” (sumar), es decir, sumar dos o más
números para calcular un total.
“Y vivió Adán ciento treinta años, y engendró un hijo a su semejanza, conforme a su
imagen, y llamó su nombre Set. Y fueron los días de Adán después que engendró a Set,
ochocientos años, y engendró hijos e hijas. Y fueron todos los días que vivió Adán novecientos
treinta años; y murió.” (Gen 5: 3-5.) [ 130 + 800 = 930 ]
“Así he estado veinte años en tu casa; catorce años te serví por tus dos hijas, y seis años
por tu ganado...” (Gen. 31:41.) [ 20 total = 14 + 6 ]

En Génesis existe el concepto de “fusión”, es decir, dos o más objetos uniéndose
para ser una cosa nueva, no simplemente un grupo de objetos separados. Esto es
diferente que sumar. Al sumar manzanas, no llegan a ser más que manzanas. Pero en una
reacción nuclear, dos átomos de hidrógeno se unen para formar un nuevo átomo de helio.
“Dijo también Dios: Júntense las aguas que están debajo de los cielos en un lugar, y descúbrase
lo seco. Y fue así. Y llamó Dios a lo seco Tierra, y a la reunión de las aguas llamó
Mares.” (Gen 1: 9-10.)  “Por tanto, dejará el hombre a su padre y a su madre, y se unirá a su mujer, y serán una  sola carne.” (Gen. 2:24.)  “Entonces os daremos nuestras hijas, y tomaremos nosotros las vuestras; y habitaremos con vosotros, y seremos un pueblo.” (Gen 34:16.)

En Génesis existe el concepto de “división”, es decir, dividir algo en partes.
“Y vio Dios que la luz era buena; y separó Dios la luz de las tinieblas.” (Gen. 1:4.)
“E hizo Dios la expansión, y separó las aguas que estaban debajo de la expansión, de las
aguas que estaban sobre la expansión.” (Gen. 1:6.)
“Y salía de Edén un río para regar el huerto, y de allí se repartía en cuatro brazos.” (Gen.
2:10.)  “...el nombre del uno fue Peleg, porque en sus días fue repartida la tierra” (Gen. 10:25.)
“...allí confundió Jehová el lenguaje de toda la tierra, y desde allí los esparció sobre la
faz de toda la tierra.” (Gen. 11:9.)
“Y tomó él todo esto, y los partió por la mitad, y puso cada mitad una enfrente de la otra;
mas no partió las aves.” (Gen. 15:10.)
“Entonces Jacob tuvo gran temor, y se angustió; y distribuyó el pueblo que tenía consigo,
y las ovejas y las vacas y los camellos, en dos campamentos.” (Gen. 32:7.)
“Maldito su furor, que fue fiero; Y su ira, que fue dura. Yo los apartaré en Jacob, Y los
esparciré en Israel.” (Gen. 49:7.) (También véanse Ex 14:21, Ex 21:35, Ex 26:33, Lev
11:4, Num 31:27, Deut 32:8.)
En Génesis existe el concepto de “infinidad”, es decir, algo sin límite.
“De cierto te bendeciré, y multiplicaré tu descendencia como las estrellas del cielo y
como la arena que está a la orilla del mar...” (Gen. 22:17.)
“Yo te haré bien, y tu descendencia será como la arena del mar, que no se puede contar
por la multitud.” (Gen. 32:12.) (También vean Salmo 139: 17-18.)

En Génesis existe el concepto del sistema moderno de contar usando múltiplos
de 10, 100, y 1000.
“Y de esta manera la harás: de trescientos codos la longitud del arca, de cincuenta codos
su anchura, y de treinta codos su altura.” (Gen. 6:15.) [300 por 50 por 30]
“...un presente para su hermano Esaú: doscientas cabras y veinte machos cabríos, doscientas
ovejas y veinte carneros, treinta camellas paridas con sus crías, cuarenta vacas y
diez novillos, veinte asnas y diez borricos.” (Gen. 32: 13-15.)
“Alzando Jacob sus ojos, miró, y he aquí venía Esaú, y los cuatrocientos hombres con él;
entonces repartió él los niños entre Lea y Raquel y las dos siervas.” (Gen. 33:1.)
“A cada uno de todos ellos dio mudas de vestidos, y a Benjamín dio trescientas piezas
de plata...” (Gen. 45:22.)
“José, siendo de edad de diecisiete años, apacentaba las ovejas con sus hermanos” (Gen.
37:2.) En Hebreo el número “diez” [asar] se usa en combinación con los números 1 al
9 para formar los números 11 al 19.
“...ponlos sobre el pueblo por jefes de millares, de centenas, de cincuenta y de diez.” (Ex.
18:21.) (También vean Deut 1:15, Marcos 6:400. )

     Tambien encontraremos otras publicaciones como Dios en las matemáticas  que tiene hasta citas matemáticas. Leamos algunas de ellas:













miércoles, 22 de febrero de 2017

El Número de Oro y Fibonacci



El Número de Oro – (PHI) La Proporción Divina
Y la Sucesión de Fibonacci  
El número de oro, número dorado, sección áurea, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción, representado por la letra griega F (fi) o Phi (en honor al escultor griego Fidias), es el número irracional: 
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}\approx 1,61803398874988...}

PUBLICIDAD
hombre vitruvio photo: Hombre de Vitruvio HombredeVitruvio-DaVinci.jpg

Observa el orden de los números:   0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,…….Conocida como la serie de Fibonacci en honor al matemático italiano que la desarrolló.
Se comienza en 0 y el siguiente número es 1. De ahí en adelante cada término siguiente se produce mediante la suma de los dos números anteriores. Se empieza la serie sumando 0 más 1, que es igual a 1, luego 1 más1, que es igual a 2, sigue 1 más 2, que es igual a 3, 2 más 3, que es igual a 5, luego 3 más 5, que es igual a 8 y se sigue la secuencia, 8 + 5 = 13, 13 + 8 = 21, 21 + 13 = 34, la suma puede seguirse indefinidamente. Lo peculiar de esta serie es que si dividimos el número siguiente entre el número anterior, el resultado se va aproximando al valor del número de oro según los números se van haciendo mayores.
Veamos el siguiente ejemplo:   Al dividir 13 entre 8 nos da 1.625, 21dividido entre 13 es igual a 1.615, 34/21 = 1.619, 55/34 =1.617, 89/55 = 1.618, y de esta manera indefinadamente seguiremos obteniendo el número de oro, que es igual a PHI (1.618033…..) 

Se trata de un número que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en las partes de un cuerpo, y en la naturaleza como relación entre cuerpos, en la morfología de diversos elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, proporciones humanas, etc.




Historia del Número de Oro

El número áureo o la proporción áurea se estudió desde la antigüedad, ya que aparece regularmente en geometría. Se conoce ya de su existencia en los pentágonos regulares y pentáculos (pentagrama –estrella) de las tabletas sumerias de alrededor del 3200 a. C.

En la antigua Grecia se utilizó para establecer las proporciones de los templos, tanto en su planta como en sus fachadas. Por aquel entonces no recibía ningún nombre especial, ya que era algo tan familiar entre los antiguos griegos que "la división de un segmento en media extrema y razón" era conocido generalmente como "la sección". En el Partenón, Fidias también lo aplicó en la composición de las esculturas. (la denominación Fi, por ser la primera letra de su nombre, la efectuó en 1900 el matemático Mark Barr en su honor). 

 
El Partenón, mostrando los rectángulos áureos usados posiblemente en su construcción.

Platón (circa 428-347 a. C.), consideró la sección áurea como la mejor de todas las relaciones matemáticas y la llave a la física del cosmos.  La sección áurea se usó mucho en el Renacimiento, particularmente en las artes plásticas y la arquitectura. Se consideraba la proporción perfecta entre los lados de un rectángulo. Da Vinci hizo las ilustraciones para una disertación publicada por Luca Pacioli en 1509 titulada De Divina Proportione, quizás la referencia más temprana en la literatura a otro de sus nombres, el de "Divina Proporción". Este libro contiene los dibujos hechos por
Leonardo da Vinci de los cinco sólidos platónicos. Es probable que fuera Leonardo quien diera por primera vez el nombre de sección áurea.  En 1525, Alberto Durero publica ´´Instrucción sobre la medida con regla y compás de figuras planas y sólidas donde describe cómo trazar con regla y compás la espiral basada en la sección áurea, que se conoce como “espiral de Durero”.
El rostro de la Gioconda proporcionado con rectángulos áureos.
 

Los artistas del renacimiento utilizaron la sección áurea en múltiples ocasiones tanto en pintura, escultura como arquitectura para lograr el equilibrio y la belleza.
Leonardo da Vinci, por ejemplo, la utilizó para definir todas las proporciones fundamentales en su pintura La última cena, desde las dimensiones de la mesa, hasta la disposición de Cristo y los discípulos sentados, así como las proporciones de las paredes y ventanas al fondo.

Leonardo da Vinci, en su cuadro de la Gioconda (o Mona Lisa) utilizó rectángulos áureos para plasmar el rostro de Mona Lisa. Se pueden localizar muchos detalles de su rostro, empezando porque el mismo rostro se encuadra en un rectángulo áureo.

El astrónomo Johannes Kepler (1571-1630), descubridor de la naturaleza elíptica de las órbitas de los planetas alrededor del Sol, mencionó también la divina proporción: “La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras; el otro, la división de una línea entre el extremo y su proporcional. El primero lo podemos comparar a una medida de oro; el segundo lo debemos denominar una joya preciosa”. Y, creyente como era dijo: "no cabe duda de que Dios es un gran matemático"

Hoy en día la sección áurea se puede ver en multitud de diseños. El más conocido y difundido sería la medida de las tarjetas de crédito, la cual también sigue dicho patrón, así como nuestro carné de identidad y también en las cajetillas de cigarrillos.  En la arquitectura moderna sigue usándose; por ejemplo, está presente en el conocido edificio de la ONU en Nueva York, el cual no es más que un gran prisma rectangular cuya cara mayor sigue las citadas proporciones.

La sección áurea en la naturaleza 


En la naturaleza, hay muchos elementos relacionados con la sección áurea:
Según el propio
Leonardo de Pisa Fibonacci, en su Libro de los ábacos, la secuencia puede ayudar a calcular casi perfectamente el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos se empiezan a reproducir cuando tienen dos meses de edad).
La relación entre la cantidad de abejas macho y abejas hembra en un panal.
La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol (no sólo del nautilus)
La relación entre los lados de un pentáculo. (Pentagrama)
La relación entre los lados de un pentágono.
La disposición de los pétalos de las flores (elnúmero áureo en la botánica recibe el nombre de Ley de Ludwig).
La distribución de las hojas en un tallo
La relación entre las nervaduras de las hojas de los árboles
La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una y equivale a F tomando como unidad la rama superior).
La distancia entre las espirales de una piña.
La Anatomía de los humanos se basa en una relación Phi exacta, así vemos que:
La relación entre la altura de un ser humano y la altura de su ombligo.
La relación entre la distancia del hombro a los dedos y la distancia del codo a los dedos.
La relación entre la altura de la cadera y la altura de la rodilla.
La relación entre el primer hueso de los dedos (metacarpiano) y la primera falange, o entre la primera y la segunda, o entre la segunda y la tercera, si dividimos todo es phi.
La relación entre el diametro de la boca y el de la nariz
Es phi la relación entre el diámetro externo de los ojos y la línea inter-pupilar
Cuando la tráquea se divide en sus bronquios, si se mide el diámetro de los bronquios por el de la tráquea se obtiene phi, o el de la aorta con sus dos ramas terminales (ilíacas primitivas).
Está comprobado que la mayor cantidad de números phi en el cuerpo y el rostro hacen que la mayoría de las personas reconozcan a esos individuos como lindos, bellos y proporcionados. Si se miden los números phi de una población determinada y se la compara con una población de modelos publicitarios, estos últimos resultan acercarse más al número phi.    La sección áurea en el arte:

Relaciones arquitectónicas en las Pirámides de Egipto.
La relación entre las partes, el techo y las columnas del Partenón, en Atenas (s. V a. C.).
En los violines, la ubicación de las efes (los “oídos”, u orificios en la tapa) se relaciona con el número áureo.
El número áureo aparece en las relaciones entre altura y ancho de los objetos y personas que aparecen en las obras de Miguel Ángel, Durero y Da Vinci, entre otros.
Las relaciones entre articulaciones en el hombre de Vitruvio y en otras obras de
Leonardo da Vinci.
En las estructuras formales de las sonatas de Mozart, en la Quinta Sinfonía de Beethoven, en obras de Schubert y Debussý (estos compositores probablemente compusieron estas relaciones de manera inconsciente, basándose en equilibrios de masas sonoras).
En la pág. 61 de la novela de Dan Brown El código Da Vinci aparece una versión desordenada de los primeros ocho números de Fibonacci (13, 3, 2, 21, 1, 1, 8, 5), que funcionan como una pista dejada por el curador del museo del Louvre, Jacques Saunière. En las pp. 121 a 123 explica algunas de las apariciones de este número fi (1,618) en la naturaleza.
En el episodio “Sabotaje” de la serie de televisión NUMB3RS (primera temporada, 2005), el genio de la matemática Charlie Eppes menciona que el número fi se encuentra en la estructura de los cristales, en la espiral de las galaxias y en la concha del nautilus.
Arte Póvera, movimiento artístico italiano de los años 1960, muchas de cuyas obras se basan en esta sucesión.
En la cinta de Darren Aronofsky Pi, el orden del caos el personaje central, Max Cohen, explica la relación que hay entre los números de Fibonacci y la sección áurea, aunque denominándola incorrectamente como Theta (?) en vez de Phi (F).




El Número Áureo en la Música


Autores como Bártok, Messiaen y Stockhausen, entre otros, compusieron obras cuyas unidades formales se relacionan (a propósito) con la sección áurea.  El compositor mexicano Silvestre Revueltas (1899-1945) utilizó también el número áureo en su obra Alcancías, para organizar las partes (unidades formales).

El grupo de rock progresivo norteamericano Tool, en su disco Lateralus (2001) hacen múltiples referencias al número áureo y a la secuencia Fibonacci, sobre todo en la canción que da nombre al disco, pues los versos de la misma están cantados de forma que el número de sílabas pronunciadas en cada uno van componiendo dicha secuencia. Además la voz entra en el minuto 1:37, que pasado al sistema decimal coincide muy aproximadamente con el número áureo.

La sección áurea en el pentáculo
(Pentagrama, estrella de  cinco puntas) e xiste la relación del número
 áureo también en el pentáculo o pentalfa, en donde Leonardo da
 Vinci lo uso para asentar en él al hombre de Vitruvio.

Gráficamente el número áureo es la relación entre el lado del pentágono regular y la recta que une dos vértices no consecutivos de éste. Si se toma como unidad un lado del pentágono interior, cualquier línea que marca los brazos de la estrella mide F. También la longitud total de cualquiera de las cinco líneas que atraviesan la estrella mide F3, mientras que la suma del lado interior y cualquiera de sus brazos es F2.  Teniendo en cuenta la gran simetría de este símbolo se observa que dentro del pentágono interior es posible dibujar una nueva estrella, con una recursividad hasta el infinito. Del mismo modo, es posible dibujar un pentágono por el exterior, que sería a su vez el pentágono interior de una estrella más grande. 
 
Al medir la longitud total de una de las cinco líneas del pentáculo interior, resulta igual a la longitud de cualquiera de los brazos de la estrella mayor, o sea F.

Qué es y de dónde proviene el número áureo
Se divide un segmento cualquiera en dos partes de forma que la razón entre la totalidad del segmento y una parte (la mayor) sea igual a la razón entre esta parte y la otra. Matemáticamente, siendo las partes a y b:


 

{\frac  {a+b}{a}}={\frac  ab}

Esta razón, que cumple la propiedad, es denominada razón áurea. Se puede obtener este número a partir de la expresión anterior:

esión anterior: 

 

Se puede despejar a utilizando la fórmula general de las ecuaciones de segundo grado, teniendo en cuenta que a > 0 y b > 0, o en otras palabras, tomando su valor positivo: 

 

Dividiendo todo por b se obtiene: 



 
Esta proporción del número de oro se presenta en todo el universo. Hoy día se presenta esta proporción áurea en objetos modernos como la tarjeta de crédito o débito, en los teléfonos celulares, televisores, símbolos o logos de compañía, instrumentos musicales, construcciones de edificios modernos y muchas cosas más. Tienes una tarea en tu vida, de descubrir lo bello que Dios ha creado en la naturaleza utilizando el número de oro, conocido como la proporción divina.  Fibonacci  presentó la sucesión en su libroLiber Abaci , publicado en 1202. Muchas propiedades de la sucesión de Fibonacci fueron descubiertas por Edouard Lucas, responsable de haberla denominado como se la conoce en la actualidad.  Para más información puedes leer libros, revistas, buscar en la internet…

Ahora que estás familiarizado con la sucesión de Fibonacci y el número de oro,  puedes contestar las siguientes dos preguntas:

11)  ¿Quién fué Leonardo de Pisa (Fibonacci) y Alberto Durero?
22)   Menciona 3 elementos de la naturaleza relacionados con la sección áurea. 
  3) ¿Como se relacionan el número de oro (sección áurea) y la sucesión de Fibonacci?
 
Esta parte es opcional, pero puedes aprender más acerca de la Espiral de Durero.
Para que te diviertas: en un papel cuadriculado, construye la Espiral de Durero. Como se muestra aquí, lee las instrucciones para lograrlo.


1)      Usando una hoja regular de papel cuadriculado volteada hacia un lado (horizontalmente), siguiendo los pasos.  Centraliza los primeros cuadrados en la hoja. Si el papel cuadriculado tiene cuadrados de 1/4 pulgada, puedes usar esa medida, pero sino, utiliza la medida de dos cuadritos para un cudrado, que es aproximadament 1 cm2  para los primeros dos cuadritos.

2)      Luego con la medida del segmento de los dos cuadritos, trazarás un cuadrado dejandote llevar por la cuadricula del papel. Empieza con el segundo cuadrado, en el papel cuadriculado, como se muestra abajo.




3)      De igual manera, trazará los siguientes cuadrados que quepan en la hoja de la cuadricula. Formarás el rectángulo áureo como se muestra abajo.




  4)      Seguirás realizando el procedimiento hasta completar  un rectángulo áureo que tiene las proporciones del número de oro. Deberá visualizarse de esta manera vertical o de manera horizontal si se cambia la perpectiva.
















9)      Usa la secuencia de Fibonacci. Esto funciona sumando los dos números previos: Obtienes el siguiente empezando
 desde el cero y 1; y así continúa 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.
El largo de un lado de cada cuadrado debe de igualar al número de la secuencia (el cero no se necesita para dibujar 
ninguna parte del cuadrado), pero el punto de inicio se llamará (0, 0), si lo ponemos de esa manera. Tendrás un cuadrado 
1X1 con un segundo 1X1 dibujado a un lado, después uno de 5X5, y después para encajar un 8X8. Debajo de todo eso, pon un
13X13 y continúa así, hasta el cuadrado más grande que quepa en tu hoja.  Dibuja cada uno de estos cuadrados en sentido 
contrario a las manecillas del reloj. Finalmente, conforme dibujes la curva a través de los cuadrados, se formará la espiral.