miércoles, 11 de julio de 2018

La araña y la mosca


Lectura tomada del Libro: Matemagia de Adrián Paenza
Preparado por Patricio Barros
Preparada para este Blog por Maximino Rosado Soto

La araña y la mosca, en una caja

¿Cuántas veces en la vida tiene uno la posibilidad de sorprenderse? A medida que van pasando los años, a medida que uno va acumulando experiencia, es cada vez más difícil encontrarse con situaciones que se corran de lo común, o en todo caso, de lo que se va haciendo cada vez más común. La probabilidad de sorprenderse disminuye con el tiempo vivido, aunque más no sea porque es una consecuencia natural: uno más vive, más cosas conoce, más acostumbrado está al mundo que lo rodea, más puede predecir lo que se avecina, y por lo tanto, es cada vez menos probable que aparezca algo que uno no haya imaginado o visto. De eso quiero hablar acá. Es que la matemática provee sorpresas que ‘atentan contra la intuición’.

En general, cuando uno se enfrenta a una situación determinada, reacciona intuyendo lo que debería pasar. Lo conjetura, lo sospecha. Pero de pronto, la realidad aporta otras ideas, distintas de las que creíamos válidas hasta ahí.

¿De qué estoy hablando? Vea, estoy hablando de un problema del que si bien conozco la respuesta, si bien la veo, la entiendo, me doy cuenta por qué pasa lo que pasa, igual... sigo sin salir de mi asombro, sigo sin poder creer que la solución que a uno se le ocurre de entrada es equivocada. Quizás usted tenga más suerte y encuentre rápido la respuesta correcta. Y estaría muy bien, pero se acabaría rápido
el problema. Mi aspiración es otra: me gustaría que a usted le pase lo que nos pasó a casi todos nosotros: errar, equivocarse. ¿Sabe por qué? Porque entonces usted tendrá la curiosidad de descubrir y pensar ‘dónde está el error de su razonamiento’, y ésa es la clave: disfrutar de poder descubrir otra forma de pensar las cosas. De eso se trata.

Un dato más: el autor de este problema es el famoso escritor inglés Henry Dudeney (1857-1930). Es obvio entonces entregarle a él todo el crédito. No sólo eso: este problema se transformó con los años en una suerte de clásico. Aunque más no sea por eso, le sugiero que le preste atención con cierto cuidado. En principio apareció en el Daily Mail de Nueva York el 18 de enero de 1905. Generó un gran interés y se sucedieron una cantidad de debates que llegaron hasta el 7 de febrero del mismo año.

Después de tanta introducción, espero que ahora no termine defraudando. Eso sí, léalo con tranquilidad, no lea rápido la respuesta. Disfrute del camino. Si fuera el caso, permítase el error, acepte equivocarse. El único premio de este tipo de problemas es el placer que produce descubrir que lo que uno intuye en principio, quizás no sea lo correcto. Acá va.Suponga que usted tiene una caja de cartón, como si fuera una caja de zapatos. Las dimensiones de la caja son las siguientes: 30 centímetros de largo, 12 de ancho y 12 de alto (ver figura 1). Como usted advierte hay una tapa, un piso, dos paredes laterales que forman un cuadrado (de 12 x 12) y otras dos que forman un
rectángulo de 30 x 12.

En un momento determinado, usted advierte que hay una araña (B) en una de las paredes laterales cuadradas de la caja (en la parte interna), ubicada justo a un centímetro de distancia del piso exactamente en la mitad de esa pared lateral, o sea, justo a seis centímetros de cada una de los bordes.



Del lado opuesto, en la otra pared lateral cuadrada de la caja, también del lado interno, hay una mosca (A). La mosca está justo a un centímetro de la tapa y también exactamente en la mitad de esa pared cuadrada en la que está apoyada, o sea, a seis centímetros de distancia de cada pared lateral más grande (ver figura 2).






Ahora bien: uno sabe que la araña puede solamente caminar por las paredes internas de la caja, cualquiera de las cuatro laterales, o por la tapa o la base. Como es imaginable, el objetivo de la araña es atrapar a la mosca, también es imaginable que la araña quiera recorrer el camino más corto posible para llegar hasta la mosca. ¿Qué camino le propondría usted? Le sugiero que haga un dibujo que le sirva para situarse en el problema.

Después de haberlo pensado, la primera respuesta de la mayoría de las personas que se enfrentaron con el problema es que la distancia más corta que debería recorrer la araña es de 42 centímetros. Fíjese si a usted le ocurre lo mismo. Sin embargo, esto no es cierto. Es decir, aunque parezca imposible, esa distancia se puede reducir. Y de eso se trata del problema: intentar reducir los 42 centímetros, lograr que la araña, caminando menos, pueda llegar a la mosca. Ahora le toca a usted: “¿Cuál es la distancia más corta que usted puede encontrar?”.

Solución:

Le proponía anteriormente que hiciera usted algunos dibujos para poder ayudarse con la ‘geometría de la situación. Imagine que la caja es de cartón y usted la puede cortar de diferentes maneras (siempre por los bordes) y dejarla plana arriba de una mesa. Inténtelo antes de seguir con la lectura y fíjese si se le ocurren distintos caminos posibles para que la araña pueda alcanzar a la mosca.
Cada uno de los cortes que uno puede hacer permite obtener diferentes configuraciones.
En la figura 3, la araña queda a 1 centímetro del borde del rectángulo que corresponde al piso, mientras que la mosca queda apoyada a 5 centímetros del cuadrado (del otro lado). En total entonces, si la araña tuviera que caminar hacia la mosca, tiene que recorrer: 1 centímetro (hasta el borde del piso), más 30 centímetros hasta el otro borde (en un camino perpendicular a lo largo de la base),
y después, sumarle 11 centímetros más hasta llegar a la mosca, ya que al haber aplanado la pared en la que estaba la mosca, ella estaba a un centímetro de la tapa superior de la caja, pero ahora quedó a once centímetros de la base. En total, sumando los tres 'tramos’, tenemos: 1 + 30 + 11 = 42
Esta es la primera respuesta, la que surge casi naturalmente. Sin embargo, quiero convencerle de que esos 42 centímetros se pueden reducir.



Tal como se ve en la figura 4, podemos cortar la caja de manera diferente: ahora los dos cuadrados no quedaron adyacentes al rectángulo que compone el piso, sino que uno de los cuadrados permanece allí, pero el otro queda adyacente a lo que es la tapa superior de la caja.



La araña sigue estando a un centímetro del rectángulo que es la tapa inferior de la caja, mientras que ahora la mosca está a un centímetro de uno de los lados del cuadrado. Supongamos que uno uniera ahora el lugar en donde quedan la araña y la mosca. Queda un segmento que corta varios rectángulos y los dos cuadrados. De hecho, ese camino corta ¡cinco! de las seis paredes de la caja. Para poder calcular esa distancia, hace falta usar el 'famosísimo’ teorema de Pitágoras41, ya que ese segmento resulta ser uno de los lados del triángulo que forman la araña B, la mosca A y un punto C como se ve en la figura. Calculemos las distancias de B a C y de C a A.

La distancia de B a C se calcula sumando:
  •  1 centímetro (que es el que hay entre el lugar que ocupa la araña y el lado izquierdo del rectángulo).
  •  30 centímetros (que ocupa el recorrido de un lado al otro del rectángulo, en este caso, es el que representa el piso).
  •  1 centímetro, que es la distancia entre el borde derecho del rectángulo y la ubicación del punto C. Al sumar estos tres valores, se obtiene: 1 + 30 + 1 = 32 centímetros. Ahora, calculemos la distancia entre C y A. Como antes, hay que sumar tres valores:
  •  6 centímetros, hasta la altura en donde está el 'techo’ del rectángulo que representa al piso.
  •  12 centímetros, para alcanzar el borde del siguiente rectángulo (que ahora representa una de las caras de la caja).
  •  6 centímetros, hasta llegar a la mosca. En total: 6 + 12 + 6 = 24 centímetros.
 
Ahora usamos el teorema de Pitágoras otra vez. (Teorema de Pitágoras: “En un triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa)  .La distancia que va entre la araña y la mosca (entre B y A) se calcula como la raíz cuadrada de la suma entre los cuadrados de 32 y 24, o sea:

322 = 32 x 32 = 1.024,         242 = 24 x 24 = 576.

La suma de estos dos valores es: 1.024 + 576 = 1.600. Ahora hay que calcular la raíz cuadrada de 1.600, que resulta ser 40. Y estamos en condiciones de concluir entonces, que:
“la araña, si sigue el camino indicado acá, puede llegar a la mosca recorriendo nada más que 40 centímetros.  Luego, si la araña siguiera este trayecto —tal como escribí anteriormente —terminaría cruzando... ¡cinco de las seis paredes internas de la caja! ¿No es notable? Para terminar, quiero incluir acá un dibujo que me envió Carlos D'Andrea (ver figura 5). Mírelo y compárelo con los dos anteriores: el que le permitiría a la araña llegar a la mosca en 42 centímetros y el más corto, de 40 centímetros. Verá que se trata de un camino ‘intermedio’, menor que 42 pero mayor que 40. Acá va.

(La versión que usted acaba de leer sobre este problema no es la que yo escribí originalmente. Allí yo
afirmaba que esos 40 centímetros eran la distancia ‘más corta’ que se podía encontrar entre la araña y la mosca, con la restricción de que la araña solamente puede caminar por las paredes internas de la caja (las cuatro caras y las dos tapas). Sin embargo, Juan Sabia me hizo notar que lo único que habíamos probado era que había un camino entre ambas de 40 centímetros, pero ¡no que era el menor posible! Carlos D’Andrea tiene una demostración de que —efectivamente— es la menor, pero no es elemental. Nosotros no pudimos encontrar una versión amigable que pudiera publicar, por lo que la invitación está hecha desde aquí: trate USTED de encontrar alguna forma de probar que 40 centímetros es la distancia mínima posible.
)


Final
La intuición indicaba otra cosa. Las arañas descubren el camino más corto sencillamente por intuición, como suele suceder en la naturaleza. Al hombre, también parte de esa misma naturaleza, siempre le queda el camino de recurrir a Pitágoras... afortunadamente. Y a continuación, puede ver el dibujo en ‘tres dimensiones’ que describiría lo que termina haciendo la araña para llegar a la mosca
(ver figura 6).

Responde a este ejercicio:

1) El estudiante resolverá el ejercicio con las medidas siguientes en pulgadas; Alto= 9", Largo=18" y Ancho= 12" utilizando siempre la posición de la araña y la mosca a la misma distancia, (la araña a 1/2 pulg. del piso y la mosca a 1/2 pulg. de la tapa en las mismas posiciones.



Sopa de Presupuesto


domingo, 8 de julio de 2018

Cinco millones de libros

Cinco millones de libros
Lectura tomada del libro: Matemagia del autor Andrian Paenza 
           Preparado por Patricio Barros 
Preparada para este blog por Maximino Rosado Soto
     En la era digital se pueden hacer cosas maravillosas, impensables hace nada más que diez años. Podría exhibir múltiples ejemplos, y estoy seguro de que cada persona que haya leído la frase anterior tendrá su propio conjunto (de ejemplos) favorito.
     Esta presentación tiene un objetivo. Me quiero detener en un episodio que ha merecido sólo una atención tangencial/marginal en los medios y quizás con razón, no lo sé. Pero lo que sí sé es que a mí me impactó mucho. Me refiero al intento de digitalización de todos los libros que se han escrito hasta nuestros días. Lo quiero escribir otra vez, para darle tiempo a que usted pueda pensar la frase: se trata de digitalizar TODOS los libros que se escribieron en la historia de la humanidad. Después de un instante de descanso y antes de seguir, tengo una pregunta para hacerle: ¿cuántos libros cree usted que son todos los libros? Por supuesto se trata de imaginar un número aproximado, y encima 'dinámico', porque mientras usted lee y yo escribo, esa cantidad está cambiando continuamente. Con todo, la estimación ronda los 130 millones en los últimos 600 años. Como era previsible... son muchos.
     Hay un proyecto que encabeza Google (Una observación que me parece importante hacer en este punto. En algunos lugares en donde aparece mi currículum, se menciona que yo trabajo y/o trabajé para Google. Ese dato es falso. Por lo tanto, me siento totalmente libre para poder opinar sobre la empresa, sin que medie ningún tipo de conveniencia ni económica ni profesional. Conozco muchísima gente que trabaja en Google, no solamente en la Argentina, sino también en los Estados Unidos, pero ni trabajo ni nunca trabajé para Google. Algo más: tengo una profunda admiración y respeto por lo que han hecho y hacen en distintos campos de la informática, y por el impacto profundo que han producido en nuestras vidas (al menos en las de los privilegiados como yo que tienen/tenemos acceso virtualmente en forma instantánea a la información... o sea, al ‘poder’)., conocido con el nombre de Proyecto Google Books (“Google Libros”). Cientos de personas que trabajan en Google están digitalizando desde el año 2004 las colecciones de 40 de las bibliotecas más grandes del mundo, así como los libros que directamente les envían las editoriales. Por supuesto, el proyecto de Google se complementa con lo que ya sucede en internet. Indexar y agrupar todas las páginas web, si bien es una tarea ciclópea, no tiene la antigüedad que ofrecen los libros, y además, ya está todo en formato digital. De cualquier forma, ¿de cuántos años estaríamos hablando? ¿Veinte?
     Digamos veinticinco para fijar las ideas. Pero el libro como tal, en forma articulada existe desde 1.440, cuando Johannes Gutenberg (Una observación de Juan Sabia: “El libro en realidad existía desde mucho antes. Lo que inventó Gutenberg fue la imprenta de tipos móviles, pero antes se hacían libros con planchas de madera, que eran obviamente muchísimo más caros, pero libros... había desde antes”.)  inventa la imprenta y a partir de ese momento, el mundo, como tal, produce un salto de calidad imposible de mensurar (al menos por mí). Pero desde que existe imprenta, la palabra escrita se masificó y la cultura comenzó a estar al alcance de todos. Sé que esto es una suerte de fantasía, porque no todo el mundo tiene acceso a alfabetizarse
(Aspiro a que sea sólo algo temporal, y que algún día no muy lejano respetemos como sociedades los derechos humanos inclaudicables de estar todos educados, bien alimentados, sanos, con trabajo y bien vestidos.), pero en todo caso, lo que pretendo decir es que desde ese momento, las herramientas de comunicación ya estaban disponibles.

     Hasta marzo del año 2012, ya llevaban digitalizados más de 20 millones de libros. Por un lado, conservar los libros en formato digital permitirá inmortalizarlos, y nunca más habrá que preocuparse de 'restaurarlos' o 'preservarlos' de las potenciales inclemencias climáticas o del deterioro natural producto del paso de los años: los bits no envejecen (En todo caso, lo que envejece es el ‘soporte’ digital.).  Por otro lado, tener semejante cantidad de datos en forma digital, permite hacer análisis impracticables de cualquier otra forma. ¿A qué me refiero? En el año 2007 Jean-Baptiste Michel (matemático e ingeniero francés) junto a Erez Lieberman Aiden (también matemático pero de origen norteamericano), ambos profesores en Harvard, implementaron un método para poder 'analizar' datos que podían extraerse de los libros. Obviamente, no se trataba de leer todos los libros sino que diseñaron un proceso que permite 'seguir el rastro' de algunas frases (de hasta no más de cinco palabras) para estudiar la evolución que han tenido en el tiempo. Las llamaron 'n'-gramas, en donde 'n' indica el número de palabras que forman la frase. Por ejemplo, una palabra aislada, cualquiera, “perro”, pongamos por caso, es un '1'-grama. “La República Argentina” es un '3'-grama, etcétera.
Tanto la gente de Google, encabezados por Peter Norvig y Jon Orwant, como Michel y Aiden, redujeron el número de libros a 5.195.769 (casi 5 millones 200 mil libros), lo que implica aproximadamente un 4% del total de libros publicados. Lo hicieron con la idea de desprenderse de todo el ruido por los errores, malas transcripciones, lugares en donde la tinta estaba borrosa, etc. Igualmente, el resultado termina siendo espectacular. Una vez que tuvieron esa base de datos descomunal, se propusieron el siguiente organigrama con las palabras que figuraban en esos libros: contarlas, agruparlas, hacer comparaciones entre ellas, buscar patrones temporales de distribución,
estudiar la frecuencia de su aparición, clasificarlas, catalogarlas, analizarlas. Y con los resultados, publicaron un trabajo que apareció en la revista Science (“Quantitative Analysis of Culture Using Millions of Digitized Books” (“Análisis cuantitativo de la cultura usando millones de libros digitalizados”), Science, 14 de enero de 2011, páginas 176-182, Jean-Baptiste Michel, Aviva Presser Aiden, Adrián Veres, el equipo de Google Books, Erez Lieberman Aiden, y otros. ) en enero del año 2011, que de hecho es la fuente principal de este artículo y hoy, el paper de Michel y Aiden es consultado por lingüistas, epistemólogos e historiadores (entre otros científicos).
     Los datos contienen más de 500 mil millones de palabras, de las que 361 mil millones son en inglés, 45 mil millones en español y otro tanto en francés, 37 mil millones en alemán, 35 mil millones en ruso, 13 mil millones en chino y 2 mil millones en hebreo.  Los trabajos más antiguos se remontan al siglo XVI (en los años 1500) y llegan hasta el año 2008. Obviamente, los datos no podrían nunca ser revisados por un humano. Dice Michel: “Si uno tratara de leer solamente los datos en inglés nada más que los que corresponden al año 2000, y pudiera leer a un paso de 200 palabras por minuto, sin
interrupciones para comer o dormir, le llevaría 80 años. La secuencia de letras es mil veces mayor que la del genoma humano: si usted las escribiera todas en forma recta —con el tamaño de letra con el que está leyendo este texto— le permitiría llegar hasta la Luna, volver a la Tierra y hacer ese camino diez veces”. Por ejemplo, tanto Michel como Aiden muestran la incidencia que tuvieron los
episodios de censura en el mundo sin necesidad de conocer ningún decreto que la impusiera. Por ejemplo, eligieron al famoso artista ruso-francés Marc Chagall (1887- 1985) nacido en Liozna, en lo que hoy sería Bielorrusia. Como Chagall era de origen judío, al hacer el estudio de la aparición de su nombre en las publicaciones de origen alemán, se produce un bajón brusco, comparado con lo que sucedía en las escritas en inglés. Esa virtual 'desaparición' que duró casi 10 años, marca lo que los
autores llaman el 'índice de supresión'. Justamente, con el mismo sistema, aparecen en el artículo diversos nombres censurados en la literatura china, rusa pero también la norteamericana,
especialmente los 10 autores y directores de cine que fueron virtualmente 'desaparecidos' entre 1947 y 1960 por las acusaciones que pesaban sobre ellos de ser 'simpatizantes comunistas'.
     Yo hice la prueba poniendo Evita y es muy interesante observar la curva estrictamente creciente desde su irrupción en la política argentina, luego un bajón pronunciado y brusco en los años posteriores al golpe militar de 1955, para luego sí, volver a crecer hasta ubicarse en un nivel acorde con el impacto que produjo su vida.


Aiden y Michel inventaron una palabra para definir su trabajo: CULTUROMICA ('culturomies', en inglés). La idea es replicar lo que la genética hace con la genómica. De la misma forma que el estudio del ADN revela patrones dentro de la biología, ambos sostienen que el enorme volumen de datos que provee la digitalización de los libros permitirá analizar y entender parte de la cultura humana.
     Ahora quiero hacerlo participar a usted. Consígase una computadora con acceso a internet. Vaya hasta este link: http://books.google.eom/ngrams  (**aparentemente la nueva dirección para el gráfico es https://books.google.com/ngrams/graph?content&direct_url= )** y pruebe el sistema. Ponga por ejemplo dos palabras que quiera investigar/comparar, digamos SIDA y cáncer. Casi en forma instantánea aparecerán dos gráficos de colores diferentes, que muestran la 'evolución' de ambas palabras en los últimos dos siglos (XIX y XX) desde los años 1800 hasta 2000. Y lo mismo puede hacer en varios idiomas y con las palabras (o frases de hasta cinco palabras) que usted quiera. Se termina transformando en una adicción y se presta para intentar teorías que expliquen los resultados, algo que los científicos hacen en su tarea cotidiana. El experimento es fascinante y si usted tiene tiempo y curiosidad, le sugiero que no se prive de intentarlo con algunas palabras que le despiertan alguna intriga. En definitiva, la posibilidad de avanzar en un trabajo de investigación está al alcance suyo (y mío): ¿cuántas veces tenemos oportunidad de hacer algo parecido sin tener que levantarse de la silla?  Yo intenté las siguientes experiencias. Le invito a que usted elija sus propios ejemplos.
Evita
Maradona
tristeza vs felicidad
dios (en español)
god (dios) (en inglés)
Marc Chagall en inglés
Marc Chagall en alemán
Perón
Alzheimer
------- ------- ------- ------- ------- ------- ------- ------- ------- -------
      Ahora estimado estudiante con la lectura anterior responderás a dos preguntas..

1) De manera de encuesta. a) Escoge una muestra de 20 estudiantes y preguntales. ¿Crees que en la escuela debe tener una parte de la biblioteca virtual sobre libros digitalizados en un sistema computarizado para consulta o buzqueda de información?. Que las respuestas sean simplemente con un SI o un NO. Sugerencia, haz una tabulación de los datos en una tabla con columnas:  Nombre, grado, Si, No. Luego haz una gráfica circular de los datos obtenidos de la muestra mostrando el porcentage que más sobresale. b) Luego de realizado el trabajo en la clase presencial con el el profesor se mostrarán los datos de todos los estudiantes y se compararan los porcentajes para llegar a una conclusión de los datos obtenidos.

2) Responde. Explica o da tu opinión acerca de la experiencia con el programa o sistema en la nueva dirección https://books.google.com/ngrams/graph?content&direct_url=
Usa 7 palabras o conceptos conocidos en las clases de matemáticas (anotalas en tu trabajo) y explica tu experiencia con el programa. ¿Cuál de las 7 palabras sobresale más en el gráfico mostrado por el sistema? Elige el idioma de español para palabras en español, si son en inglés- elige inglish, etc.
 Ejemplos de palabras que he introducido en el programa:

Preparada para este blog por Maximino Rosado Soto